Density of rational points on elliptic fibrations–-II
نویسندگان
چکیده
منابع مشابه
Rational Points on Elliptic Surfaces
x.1. Elliptic Surfaces Deenition. An elliptic surface consists of a smooth (projective) surface E, a smooth (projective) curve C, and a morphism : E ?! C such that almost all bers E t = ?1 (t) are (smooth projective) curves of genus 1. In addition, we will generally assume that our elliptic surfaces come equipped with an identity section 0 : C ?! E which serves as the identity element of the gr...
متن کاملTwelve Points on the Projective Line, Branched Covers, and Rational Elliptic Fibrations
The following divisors in the space Sym12 P1 of twelve points on P 1 are actually the same: (A) The possible locus of the twelve nodal fibers in a rational elliptic fibration (i.e. a pencil of plane cubic curves); (B) degree 12 binary forms that can be expressed as a cube plus a square; (C) the locus of the twelve tangents to a smooth plane quartic from a general point of the plane; (D) the bra...
متن کاملThe density of rational points on non-singular hypersurfaces, II
For any integers d, n ≥ 2, let X ⊂ P be a non-singular hypersurface of degree d that is defined over Q. The main result in this paper is a proof that the number NX(B) of Q-rational points on X which have height at most B satisfies NX(B) = Od,ε,n(B n−1+ε), for any ε > 0. The implied constant in this estimate depends at most upon d, ε and n. Mathematics Subject Classification (2000): 11D45 (11G35...
متن کاملAbelian fibrations and rational points on symmetric products
Let X be an algebraic variety defined over a number field K and X(K) its set of K-rational points. We are interested in properties of X(K) imposed by the global geometry of X. We say that rational points on X are potentially dense if there exists a finite field extension L/K such that X(L) is Zariski dense. It is expected at least for surfaces that if there are no finite étale covers of X domin...
متن کاملRational Points on Certain Elliptic Surfaces
Let Ef : y 2 = x + f(t)x, where f ∈ Q[t] \ Q, and let us assume that deg f ≤ 4. In this paper we prove that if deg f ≤ 3, then there exists a rational base change t 7→ φ(t) such that there is a non-torsion section on the surface Ef◦φ. A similar theorem is valid in case when deg f = 4 and there exists t0 ∈ Q such that infinitely many rational points lie on the curve Et0 : y 2 = x + f(t0)x. In pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2008
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa134-2-4